Une méthode multirésolution adaptative pour les systèmes de réaction-diffusion raides

Thierry Dumont

Institut Camille Jordan

14 juin 2022

Plus de détails :

https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_ 2017_3_29_0/

Auteurs: Descombes, Duarte, Dumont, Guillet, Louvet, Massot.

$$\begin{split} \frac{\partial u_i}{\partial t}(x,t) - \operatorname{div}(\varepsilon_i(x) \text{ grad } u_i(x,t)) &= f_i(u(x,t)), \quad x \in \Omega \subset \mathbb{R}^d, \ t > 0, \\ u_i(x,0) &= u_i^0(x), & x \in \Omega; \end{split}$$

Systèmes...

$$\frac{dU}{dt} = A_{\varepsilon}U + F(U),$$

On s'intéresse aux cas (fréquents) où :

1. Les systèmes d'EDOs

$$\frac{dU}{dt} = F(U)$$

sont raides.

- 2. Diffusion « petite ».
- 3. $n ext{ équations } n = 2, 5, \dots, 20, \dots 100 \dots$

Splitting

▶ Diffusion D :

$$\frac{dV}{dt}=A_{\varepsilon}V.$$

► Réaction *R* :

$$\frac{dW}{dt} = F(W).$$

Splitting

▶ Diffusion D :

$$\frac{dV}{dt} = A_{\varepsilon}V.$$

► Réaction *R* :

$$\frac{dW}{dt} = F(W).$$

Schéma de Strang :

$$U_{n+1} = R_{\Delta t/2} \circ D_{\Delta t} \circ R_{\Delta t/2} U_n.$$

Remarques 1) la réaction R.

Une fois discrétisé en espace, $R_{\Delta t/2}$ est calculable en parallèle. Mais les problèmes sont raides :

- solveur adapté : Radau5.
- temps calcul fortement variable d'un point à un autre et en temps (ondes progressives) : => parallélisme difficile à équilibrer

Remarques 2) la diffusion *D*.

Diffusion « faible » dans les problèmes intéressants.

- => Utiliser des méthodes de Runge-Kutta explicites et stabilisées :
 - ordre n, mais (beaucoup) plus de n pas (Exemples : Rock2, Rock4).
 - Uniquement des produits matrice × vecteur (et des combinaisons linéaires) => aisément parallélisable.

Problèmes types, exemples

La réaction de Belusov-Zhabotinsky (BZ). m = 3 inconnues. Terme réactif

$$f_1(u_1, u_2, u_3) = 10^5 (-2 \cdot 10^{-2} u_1 - u_2 u_1 + 1.6 u_3),$$

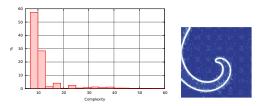
$$f_2(u_1, u_2, u_3) = 10^2 (u_2 - u_2^2 - u_1(u_2 - 2 \cdot 10^{-2})),$$

$$f_3(u_1, u_2, u_3) = u_2 - u_3.$$

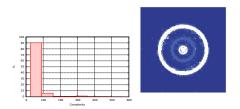
▶ Un modèle d'AVC. m=21 équations, particulièrement raide. Le Jacobien vers F(U)=0 a des valeurs propres dans $[-10^8,0[$ (modélisation de canaux ioniques).

Illustrations. Grille cartésienne 1024 × 1024.

Le calcul de la réaction.



BZ : à droite : zones où le coût calcul est $> 17 \times$ le coût minimum.



STROKE. À droite : zones où le coût calcul est $> 80 \times$ le coût minimum.

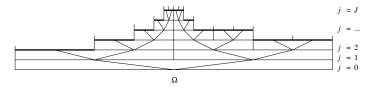
- ▶ BZ : 87 % du temps CPU consommé dans les régions où la complexité est inférieure à 17.
- ➤ STROKE : 90 % du temps CPU consommé dans les régions où la complexité est inférieure à 60.

- ▶ BZ : 87 % du temps CPU consommé dans les régions où la complexité est inférieure à 17.
- ➤ STROKE : 90 % du temps CPU consommé dans les régions où la complexité est inférieure à 60.
- 1. Stratégie de « Maillage adaptatif ».
- Parallélisation : comment faire? (les zones coûteuses sont « mobiles ».)

Adaptation de maillage : multiresolution adaptative

$$\Omega = [0,1]^d$$
, $d = 1,2,3$

Division récursive dyadique du niveau j=1 au niveau j=J. Volumes finis associé à *toutes* les cellules (nœuds, feuilles) de l'arbre :



On s'intéresse à la solution sur les feuilles, mais la solution est stockée sur toutes les cellules.

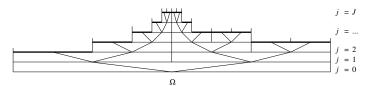
Opérateurs de prolongement et de restriction

- $ightharpoonup P_{j-1}^j$ (restriction : du niveau j vers le niveau j-1 : moyenne.
- ▶ P_j^{j-1} (prolongement : du niveau j-1 vers le niveau j : interpolation polynomiale entre deux voisins :

$$\hat{u}_{j+1,2k} = u_{j,k} + \frac{1}{8}(u_{j,k-1} - u_{j,k+1}),$$

$$\hat{u}_{j+1,2k+1} = u_{j,k} + \frac{1}{8}(u_{j,k+1} - u_{j,k-1}).$$

En dimension > 1, produit tensoriel.



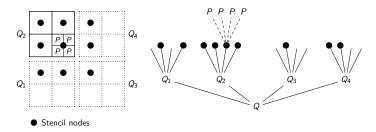
Détails, adaptation

$$d_{j,k} = u_{j,k} - P_j^{j-1} \circ P_{j-1}^j u_{j,k}.$$

Adaptation basée sur la taille des détails.

Implantation : problème de localisation des données

Exemple en dimension 2:



Nécessite une structure de donnée adaptée.

Z-order, Morton code,...

Au niveau j, les coordonnées x_i d'un nœud P exprimées en base 2 sont :

$$x_i=0.x_{i,1}x_{i,2}\cdots x_{i,j-1}x_{i,j}.$$

L'abscisse de Morton est définie en intercalant les digits des différentes coordonnées. Exemple en dimension 2 :

$$s = x_{1,1}x_{2,1}x_{1,2}x_{2,2}\cdots x_{1,j}x_{2,j}.$$

Z-order, Morton code,...

Au niveau j, les coordonnées x_i d'un nœud P exprimées en base 2 sont :

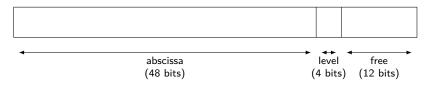
$$x_i = 0.x_{i,1}x_{i,2}\cdots x_{i,j-1}x_{i,j}.$$

L'abscisse de Morton est définie en intercalant les digits des différentes coordonnées. Exemple en dimension 2 :

$$s = x_{1,1}x_{2,1}x_{1,2}x_{2,2}\cdots x_{1,j}x_{2,j}.$$

Peut aussi être vue comme une numérotation récursive, par quadrants successifs.

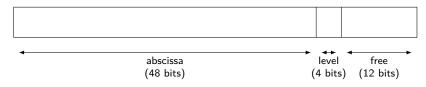
En pratique



Représentation d'un nœud sur un entier 64-bits.

ce qui permet 16 niveaux en dimension 3.

En pratique



Représentation d'un nœud sur un entier 64-bits.

ce qui permet 16 niveaux en dimension 3.

Les nœuds sont stockés dans des blocs. Le bloc k stocke les nœuds d'abscisse $\in [s_k, S_k]$.

- On s'arrange pour que les tailles des blocs soit à peu près constantes.
- Les nœuds ne sont pas ordonnés par abscisse croissante dans les blocs (plus efficace!).
- ► Un arbre binaire permet de gérer efficacement la collection de blocs.

Parallélisme

On peut vérifier, moyennant quelques astuces, que le calcul des détails, des raffinements et des dé-raffinements peuvent être effectués en parallèle.

Parallélisation

- ► Mémoire partagée.
- ▶ Threading Building Blocks (TBB, Intel, licence Apache v2.0).

Parallélisme par vol de tâches :

- Adaptée aux calculs hétérogènes.
- Composable (utile pour la gestion du maillage).

C++, utilisation « simple ».

Parallélisation

- 1. Réaction : une tâche = un bloc de nœuds.
- 2. Diffusion:

Méthode Rock appliquée à un problème linéaire = appliquer un polynôme de la matrice à un vecteur.

Schéma de Horner, parallélisation des produits matrice \times vecteur (et des combinaisons linéaires).

Le stockage des inconnues

Stockage nœud par nœud ou stockage inconnue par inconnue?

Le stockage des inconnues

Stockage nœud par nœud ou stockage inconnue par inconnue?

L'intensité arithmétique de Radau5 est grande par rapport à celle des produits matrice \times vecteur

=> stockage par inconnues.

Performances

▶ 2d :

		J			
		8	9	10	
BZ	MR	1.14×10^{-2}	2.51×10^{-2}	4.06×10^{-2}	
	СМ	$1.31 \times 10^{-2} $ (1.2)	4.06×10^{-2} (1.6)	1.78×10^{-1} (4.4)	
STROKE	MR	2.4×10^{-2} 3.2×10^{-1} (13.3)	4.03×10^{-2}	1.03×10^{-1}	
	СМ	3.2×10^{-1} (13.3)	1.21 (30.0)	4.80 (46.6)	

Performances

▶ 2d :

		J			
		8	9	10	
BZ	MR	1.14×10^{-2}	2.51×10^{-2}	4.06×10^{-2}	
	СМ	1.31×10^{-2} (1.2)	$4.06 \times 10^{-2} $ (1.6)	1.78×10^{-1} (4.4)	
STROKE	MR	2.4×10^{-2}	4.03×10^{-2}	1.03×10^{-1}	
	СМ	3.2×10^{-1} (13.3)	1.21 (30.0)	4.80 (46.6)	

▶ 3d :

		J	
		8	9
BZ	MR	0.97	5.75
DZ.	CM	3.05 (3.1)	23.60 (4.1)
STROKE	MR	1.53	10.81
SIRUKE	CM	76.68 (50.0)	610.50 (56.5)

Simulations 3D, 10 niveaux max., 40 threads. Pourcentage de temps \mbox{CPU} :

	BZ	STROKE
Mesh Adaptation	19.23	7.20
Reaction Solver	56.23	88.89
Diffusion Solver	24.54	3.91

Quelques éléments pour conclure

- Efficacité.
- Complexité de l'implantation.
- Le vol de tâches :
 - simple en mémoire partagée.
 - Attention aux machines NUMA!
 - Généralisation en mémoire distribuée?
 - L'avenir en mémoire partagée (cf. Rust)?